FIND研究員:李啟榮
軟體安全足以動搖國本,連美國軍方都開始重視「軟體成分清單(Software Bill of Materials,SBOM)」的重要性,希望從源頭把關每個軟體組成和元件的安全性,減少漏洞和風險暴露而被駭客利用。另外,隨著美國與中國在「生成式人工智慧(Generative AI)」的軍備競賽愈演愈烈,美國陸軍希望在軍用AI的開發上,導入SBOM的概念,揭露軟體成分,以利與美軍後勤體系進一步整合。
【技術發展背景】
美國陸軍採購後勤技術部(Army for Acquisition, Logistics, and Technology)首席副部長楊邦(Young Bang)有感於美軍逐步導入人工智慧,作為武器控制、部隊通訊、指揮決策的關鍵角色,以SBOM為靈感,提出了配合美國陸軍採購需求的「AI BOM(AI成份清單)」的倡議,稱作「Project Linchpin」。
圖 1 美國陸軍採購後勤技術部 首席副部長 楊邦
資料來源: (Edwards, 2023)
楊邦接著表示,AI成份清單需要將AI引擎的演算法、參數設定、資料集(Dataset)等成分揭露出來,來預防木馬程式潛伏、資料集下毒(Data poisoning)等風險,讓AI所使用的提示詞(Prompt)避免產生意料之外的結果。
【技術介紹與應用現況】
AI BOM就跟SBOM一樣,內容清單要交代AI模型的摘要資訊、模型架構、預期用途和注意事項 (Mor-Ofek, 2024)。包括:
模型摘要資訊:模型名稱、模型類別、模型版本號、外連函式庫、模型開發者名稱、模型簽署證明(Attestation)
模型架構:前代繼承模型(Parent model)、基準模型(Base model)、模型架構和模型家族、軟體和硬體、下載函式庫、資料集、輸入輸出端
模型用途:預期用途說明、禁止使用之用途說明、例外(非預期且非禁止)用途說明
注意事項:AI模型倫理道德使用限制、AI模型使用對環境之影響(例:碳排、能耗)
AI BOM的理念雖然立意良好,但在要付諸實行之前卻遇上國防承包商的反彈,怕有機密疑慮。因此,「AI BOM」此一概念得做出調整、改弦更張,預計將改為「概要卡(Summary card)」的方式,僅列舉非產業敏感項目,來評斷AI業者自行提出的公開資料,是否值得被美軍採用 (Demarest, 2024)。
【未來展望/挑戰】
AI BOM的概念,起初是美軍針對中國藉由AI軟硬體紅色供應鏈,將生成式AI武器化作出的回應,藉由讓生成式AI用途透明化,讓AI更容易被信任和掌握;但在要付諸實行的過程中,卻因為生成式AI的部分技術細節仍有機敏考量,而不如SBOM那樣地順利推廣並被採納。
在生成式AI的導入過程中,往往會遇到AI演算法透明化、個資隱私、技術機密等多方面折衷與妥協,若不同的生成式AI相關應用,要串接成完整的AI BOM,勢必取得相關各方的通力合作,以及來自業主和使用者的信任,才有機會實現生成式AI的安全、透明及高效率。
封面圖片來源:123RF
參考資料來源:
1.Demarest, C. (2023, June 1). US Army may ask defense industry to disclose AI algorithms. Retrieved from Defense News: https://www.defensenews.com/artificial-intelligence/2023/05/31/us-army-may-ask-defense-industry-to-disclose-ai-algorithms/
2.Demarest, C. (2024, Apr 23). Army may swap AI bill of materials for simpler 'baseball cards'. Retrieved from C4ISRnet: https://www.c4isrnet.com/artificial-intelligence/2024/04/23/army-may-swap-ai-bill-of-materials-for-simpler-baseball-cards/
3.Edwards, J. (2023, June 1). Young Bang: Army Eyes 'Bill of Materials' for AI Algorithms. Retrieved from ExecutiveGov: https://executivegov.com/2023/06/young-bang-army-eyes-bill-of-materials-for-ai-algorithms/
4.Mor-Ofek, D. (2024, March 15). It's Time to Talk About AI/ML BOM (Artificial Intelligence Bill of Materials) And Vulnerability Management. Retrieved from C2A Security: https://c2a-sec.com/its-time-to-talk-about-ai-ml-bom-artificial-intelligence-bill-of-materials-and-vulnerability-management/
5.Pomerleau, M. (2023, May 25). Army looking at the possibility of 'AI BOMs'. Retrieved from DefenseScoop: https://defensescoop.com/2023/05/25/army-looking-at-the-possibility-of-ai-boms-bill-of-materials/
6.Underwood, K. (2023, May 25). S. Army Is Considering AI Bill of Materials. Retrieved from AFCEA International: https://www.afcea.org/signal-media/cyber-edge/us-army-considering-ai-bill-materials